On some new Phelliinæ from New Guinea.

By
Gilbert C. IBomine, M.A., D.Sc., F.R.S.,
Fellow of Merton College, Oxford, and Linacre Professor of Zoology and Comparative Anatomy.

With Plates 3-5, and 2 Text-figures.

'IWE gemms l'hollin, institated by (iosse (14) and planod in the family. Sagartiade, was originally dofind hy him as follows: "Base ndhering to rocks; little exceeding the column. Column pillar-like in expansion; the margin tentaculate, withont parapet or fosse. Surface smonth, pierceal with loop-holes; partly choted with a tough epidermis, which is rongh externally, firmly alherent to the skin. Dise concave; the edge mot modnate. J'entactes few, in more than one row ; barred. Nonth not raised on a cone; lip thickened. Acontia discharged but reluctantly."

The type species is Phellia murocincta, Gosse, and tu this the anthor" of the 'Actinologia Britannica' adden gansapata and picta, and included the genus in his family Sagartiade, one of the characters of which, as given by Gosse, was " integnment pierced with loop-holes (cinclides) -special orifices, throngh which are emitted and retracted Heshy eords (acontia) which have their origin in the membranons partitions of the body-cavity."

In 1867 Vorsill (28) erected the sub-family l'hellime of the family Actinide, defining it as follows: "Colnman elongnted; covered with a persisent thickened epidermal deposit, except that, nemr the margin and sometimes close to the buse, the
surfare is maked mol mat be retracted within the thiekoned portions. Acontin vory fow mal soldonn amilled--perlinps entirely wanting in some species." In his definition of the goblus Phollia Vemill says of the acomtia that they are "sparingly emitted from the month and from pores woar the bance" amd in his deseription of a lapge and handsomespecies, Phellia panamonsis, he notes among other characters the following: "Colnm" . . capahle of contracting into the form of a tall eone hy involving the smmont. 'lentaches abont 96 in momber, the 12 inner ones large and st mo . . . In dissecting a liuge specimen it was fommd that the 12 septa corresponding to the 12 lange inner tentacles, aro much larger than the others, with the imser edges strongly thickenchland muscular, and bear the large comvolnted ovaries thronghont manly their whole length, while the intervening septa are very marow, not thickened, and bear no sexnal "woms." 'This is tho first recorded acoonat of the intermal anatomy of at momber of the gemas lhollia. It shombld be ohsorver that Verrill keeps the Phellina distinct from his

In 1881. Amdres (l) makes tho l'hellida a sul/ lamily of the fanily Aetinine, keeping them separate from the Sagatialae, aml inchades in the sub-family the genera ()ctophellia, Pleellia, Hyactis, Chitonactis and Ammonatis. Of these Octophellia does not appear to have heen heard of again, and tho three last have been removed from the sub-fanily on anatommeal grommels. Andres' defintion of the lhellina is fommed on external characters, but in his aceomnt of the amatemy of Actinims he takes lhellia limicola as an illustration, and figures and describes six pairs of complete and fertile mesontrries will labial aml parietal mesenterial stomata; righteren paise of infortile incomplete mesentories. In the light of
 statements is open to suspicion. Thas, he omits to figure or Wescribe the chnracoristic parietal musclos of tho mosenteries; lue figures and describes, correctly enough, the muscle banners of the large longitudinal retractors of the twelve primary

 a feature which, if it ocrors, is mifuce among the sperios amatomically invertigated. Nows seriex wore ad小d to the

 -hort :matomical accomut of Phellia tornatalla, amb in the same year Hadlom (16) and Magniw (24) did the s:mme for P'. sollasi from the istand of Fimafuti lathe followiner year Kwitniewsky (23) deseribed the anatomy of 1 '. ambor nensis and Haddon (17) that of 1 '. vermiformis ami gansapata. 'Tlie result of these several investigations may be smmarised ly saying that they corrected Gosoces and 'errill's emper in attributing einclides to the gemus; thes. contimed Vervill's olse sevation that gemals are larme muly
 attention to the small size and imperfeet development of the remaining mesenteries; showed that they have only parictab and wo longimdinal retactor masides, amb that they ean bo aranged in seromblary, tertary and quaternary orders, hut. the last order is alwass inemplete. Kwiotherway sugerond. as :an aldition to the defintion of the fanily, that tha fourth rege of mesimberise is moly represented hy half the folt monher, since the quatermag septa are ahsent in bll the luenli adjacent to the primary septa. The anthors, furthermore, agreed in deseribing a mesoglaval sphanctor monelo. extemding ofer the "pper thind of the colmm, thicker helow in the seapus, but tinimer above in the capitular region. The untcome of this work was a mew definition of the Ihellima ly. buth K"ietnewsky and Haddm, buh now including the sulfamily in the sagatiolae. I quote Haddon only, as the two anthoms agree in all but unessential partienlars. " lhelliana" (sic, Kwietniewsy gives Jhellinar, Vorrill); "Sagartiada, with nsmally an elongated colmm, the capitnlar part of whieh is delicate and ext-msile; hody-wall provided with a cuticle, hut without any solid or hollow processes, such as tubercles. resicles or suckers; no cinclides. 'Tentackes simple, neither very mumerons nor very long. Only six pairs of perfect gol. 63, pakt 1.-new geries.
 teries are usiablly freoly devoloped. 'Thur rotrator museles are very strongly developed on the primary mesenteries. Acoutia nsually feebly devoloped, and emitted only through tho month. Firomg moverlazal sphimetor muscle." similar as their defintions are, the two anthorities diffored willely in respert of the forms included in tho sub-f:nnily. K wietniewsky, and with him Simon and C'arlgren, includer C'londractinia, Hommathia, Chitonactis and other forms, which Haddon placed apart in another sulb-family Chondractininae on the grond gromm that, whereas in Phellia the primary mesenteries alons atre fortile, in thr Chomdractinione they are always -terile, and only the well-developed lesser mesenteries are fertile. 'There can he no doubt that the julgment of the Britinh anthor is eorrect.

Rocemtly, in 1911, Wilsmore (31) has givon a careful anatomical deaription of lhollia brownii and cajpitata from Now sumbla W^{\prime} alos, in which sho has comfirmed and extemed the whatevations of her prodecessors.

As may be infored from this short historical proface, the

 None the less, 1 am agrain dealing with tho sulbjert at sume lemerth. Among the Actinians collected by Wr. Willey in New Gumea were five species referable to the sub-liamily, fomr of which I lave placed in the genus llablia, and for the fifth I have erected a new genns. It was mot possible to determine the systematic position of the forms except by a'study of the anatomy; dissection grave few results, so I had reconrse to sections, aml in the stuly of these my attention was directed to a momher of details, from which, as I think, inferences as to the systematic pration and afthoties of the Phollinito may legitimately be drawn. 'Therefore, nthongh I amst neees-arily triverse a considerable extent of old ground, I lave not sernpled to set out my observations in full, and must ask the reader's pardon if some parts of them are of no great novelty and interest.

Accepting Haddon's exclusion from the Phelliinæ of the forms which he has placed in the Chondractinime, and accepting provisionally lis definition of the former group, I will proceed to the discription of the species contained in Dr. Willey's collection, reserring further discussion for the latter part of this paper.

Gexes Phellia, Gosse.

Phellia castanea, il.sp.

Single, fixed (\%). Scapus minutely transwersely wrinkled and furrowed; covered by a chestnut-red cuticle in which are imbedded numerous grains of reddish, black, and colourless and transparent quartz sand. The upper sixth of the scapus introverted in contraction. Column cylindrical, tapering slightly towards the base. Capitulum in contracted state very short, longitudinally ridged. Base or physa thin, concave; in the single specimen examined filled with quartz sand impacted with mucus into a solid mass. Tentacles 24, in two cycles of 12 and 12 ; short, conical, deeply transversely wrinkled in contraction. Peristome deeply concave, rery thin. Mouth gaping.

Length of contracted specimen, 9 mm .; greatest diameter, j) mm . ; diameter at base, $3 \because 3 \mathrm{~mm}$.

Locality : Rakaiya, New Britain.
The above description, limited to external characters, requires the following explanation. In many species of Phellia a considerable part of the upper or distal part of the column is introverted in contraction, as in Edwardsia, and Wilsmore (31) describes the whole of the involuted portion as the capitulnm. This description, I take leave to think, is an error. The terms "capitulum," "scapus," and "physa" were first used by (iosse (14) in his definition of the genns: Dגれwardsia: "Colmnn long, slender, cylindrical, divided into three distinct regions, of which the two terminal are retracted within the central one. Anterior region forming a short thick pillar (capitulum) of less diameter than the central, and more delicate. Central region (scapus) covered by a
-kin (epidermis more or less thick and opaque. Posterior region (physa) thin, pellucid, inflatable like a bladder; imperforate (: (\%)."

Haddon (15 and 17) and others have extended the use of these terms, without much discretion, as I think, to the description of Actimians, in which there is no very obvions distinction of the column inte three, or even into two regions. Gosse does not use the terms "capitulum" and "scapns" in his definition of the gemus Phellia, but his figures (loc. cit., Pl. 7 , fig: 1 and 2 ; Pl. 12, fig. 8) show as clear a division into an anterior more delicate region and a central region corered by an epidermis as in any of the Edwardsia illustrated in the same plates. It seems legitimate, therefore, to apply the terms " capitulum " and "scapus" to the Phelliidæ, but with their original signification. The term "scapus" *hould be limited to that part of the column clothed by an epidermis, and the term "capitnlum" to the distal part of the colmm not so clothed and of a more transparent and delicate structure. That Gosse recoguised this distinction is shown by his account of the habits of Edwardsia callimorpha (beautempsii) loc. cit., p. 257: "If rudely tonched the disc was suddenly withdrawn ; the capitulum, and then the upper two-thirds of the scapus, disappearing in rapid succession hy a process of introversion." The capitulun, therefore, is not that part of the column introverted in contraction, but the more delicate distal region of the column, not corered by an epidermis. The two regions are distinct enough in Phellia castanea, but the capitulum is very short and so deeply infolded in contraction that its limits are not casy to determine in transverse sections. It is recognised by the thimess of the mesogloa ; the small size of the sphincter muscle, here rednced to a few circnlar fibres imbedded in the mesoglcea; and the low columnar layer of ectoderm, with a distinct external limiting membrane but no trace of an epidermis. The introverted portion of the scapus is readily distinguished by the abundant epidermis, reddishbrown in stained sections; by the sparse and modified ecto-
derm underlying the epidermis; and by the thickness of the mesogloea, which, in this region, is specially thickened to form six longitndinal ridges corresponding to the exocoles of the six pairs of primary mesenteries. From these ridges secondary branched projections radiate towards the centre of the cavity of introversion, and each whole ridge with its projections seems to correspond with the " soft nose-like projections of the capitnlum," describer by Wilsmore (31) in Phellia browni.

In P. castanea the sphincter muscle is mesoglœal ; not very strongly developed, thickest at the rim of the introverted region of the scapms and thimest in the capitnlum. It is somewhat thickened at the bases-i. e. the morphological inner sides-of the six mesoglœal ridge-like thickenings described above, but it does not extend deeply into these thickenings nor into the secondary projections from them, as described by Wilsmore for P. browni.

Mesexteries.-These are best described as macromesenteries and micromesenteries.

The Macronesexteries are twelve in number, forming six pairs, two of which are directives. All the macromesenteries are well developed, attached throughout its length to the actinopharynx; are provided with well-developed parietal muscles; and bear conspicnous longitudinal retractor muscles. 'The latter are reniform in section; have the usual Actinian arrangement, that is to say, they are dos à dos in the directive, vis à vis in the remaining mesenterial pairs; and the mesoglceal pleats to which the muscle fibres are attached give a characteristic dendritic figure in transverse section. In the distal three-quarters of the column the mesenterial arrangement does not reqnire any special description, but, in the proximal third the macromesenteries in regular sequence diminish in size and lose first the large reniform musele banner lower down the plicated free edge with its mesenterial filament, and finally on the inner wall of the colnmare reduced to relatively low ridges in which only the parietal muscles can be distinguished.

Faurot (13) has remarked that the "Actinies pivotantes," a group in which he includes the genera Edwardsia, Halcampa, Peachia, Ilyanthus, and Eloactis, are characterised by the gradual diminution in width of the macromesenteries towards the basal end, and by the diminution in size and final disappearance of the longitudinal retractor muscles in the narrow ends of the mesenteries. He has also (loc. cit., p. 91) laid stress on the fact that in Halcampa (as was first observed by R. Hertwig (19)), Peachia (= Siphonactis), Cereus pedunculatus ($=$ Sagartia bellis), and Chitonactis coronata, two couples ${ }^{1}$ of mesenteries, namely, those Which appear fifth and sixth in order of development, are recognisably narrower and shorter than the other eight protocnemes: "Il en résulte uue disposition qui, sur les coupes transrersales, permet de reconnaître facilement les huit premières cloisons formées chez l'embryon. Cette disposition existe aussi, quoique moins évidente, sur les Hexactinies adnltes."

Similar observations have been made by G. N. and A. F. Dixon (10) on Bumodes rerrucosa, Actinia mesembryanthemum, and Cereus bellis.

A similar embryonic condition of the protocnemes is very clearly exhibited in the basal third of Phellia castanea, and in other undoubted members of the genus Phellia described in this paper. As is shown in Pl. f, fig. 1.), at a distance of about one-third of the length of the contracted specimen from the basal end the ventral members of the dorsolateral and ventro-lateral macromesenterial pairs diminish in size; the large, reniform muscle banner is rednced and finally disappears; the plicated free edge of the mesentery becomes narrower, loses the filament, and eventually dies ont altogether, so that a transverse section taken somewhat below this level shows only eight macromesenteries with the muscle bammers oriented as in Vdwardsia. At a somewhat lowel level the two directive pairs of macromesenteries follow

[^0]suit (see Pl. 4, fig. 19, for P. phassonesiotes), leaving only four macromesenteries with muscle banners, and these correspond with the two couples of protocnemes formed first in Actinian development. Close to the base all the maeromesenteries are rednced, and are recognisable only by the somewhat larger size of their persistent parietal muscles.
'This reduction and final disappearance in regular succession of the musele banners and mesenterial filaments in certain macromesenterial couples is of importance, for it suggests that in Phellia and in the other genera enmmerated by Faurot and the Dixons the stages with four and eight protocnemes are of some duration in ontogeny, and that the two mesenterial couples which make up the hexameral arrangement are added comparatively late in life. It also has the practical adrantage that it enables one to determine the orientation of the animal, and to define the "dorsal" or sulcular and "rentral" or sulear aspects with much greater precision than is possible in most hexameral Aetinians.

Previons anthors have noted the fact, and it has become part of the definition of the sub-family l'liellina (Haddon (17), Kwietniewsky (22)), that gonads are borne only on the twelve macromesenteries. 'This is true of Plellia castanea, with the difference that in the single specimen contained in Dr. Willey's collection there are only ten pairs of fertile mesenteries, the ventral members of the rentrolateral pairs being sterile. The speeimen is a male, and in every fertile mesentery some of the sperm-follicles contain spermatozoa, others showing only the earlier phases of spermatogenesis. It is possible that the absence of gonads in a single conple of macromesenteries may be an individual peculiarity, or that in this case the development of the germ-cells in this particnlar mesenterial couple may have been retarded. But I conld find no trace of germ-cells in this sterile couple, and am inclined to the opinion that these, the latest of the maeromesenteries to be developed, are definitely and permanently sterile in P. castanea, but must admit that the evidence in faromr of this opinion is not very definite.

It is noticeable that in P. castanea the ventral members of the dorso-lateral and ventro-lateral pairs are the only macromesenteries that give off acontia, therefore the lastnamed organs are confined to the macromesenteries latest in order of development. In two other species in Dr. Willey's collection undoubtedly belonging to the genns Phellia none of the macromesenteries bear acontia, but according to Maguire (24) all the macromesenteries bear acontia in P. sollasi. Neither Kwietniewski (22 and 23) nor Wilamore (31) makes any definite statement on this subject with reference to the species that they have respectively studied. It would seem that the distribution and development of acontia varies within wide limits in the genns.

There are both labial and parietal mesenterial stomata, the former minnte, the latter of considerable size. Both lie at about the same level, close below the oral disc. The acontia pass freely through the parietal stomata from one intermesenterial space to another.

Micronesenteries.-These are sixteen in number, all of them small, and for the most part consisting of low ridges projecting from the body-wall into the colenteron, each ridge consisting of the central mesogloal lamina with lateral folds, to which the muscle fibres of the parietal muscles are attached, the whole covered by mifferentiated endoderin. 'The micromesenteries, however, are of different sizes, and some of them are so far adranced beyond the others in development that they bear mesenterial filaments, acontia, and even traces of longitndinal retractor muscles. 'Their structure and arrangement require detailed consideration.

There are three micromesenteries in each dorso-lateral sextant ${ }^{1}$: of these the median, marked dl. 1 in Pl .4 , figs. 14, 15,16 , is the largest, bears a short mesenterial filament, trefoil-shaped in section, has a trace of a longitudinal

1 The six pairs of macromesenteries divide the colenteron into six equal radial exocolic chambers, which may be conveniently described as sextants, and I shall use this mame for descriptive purposes throughout this paper.
retractor muscle, and gives off an acontium ; the most dorsal of the three, marked ll .2 in Pl . 4, figs. $14,15,16$, has a well-developed parietal muscle, but bears neither filament nor acontium ; the most rentral of the three, marked dl. :3 in Pl. 4 , figs. $14,15,16$, is very small, and even the parietal muscle is rudimentary.

There are similarly three micromesenteries in each lateral sextant: of these the median, marked $l .1 \mathrm{in} \mathrm{Pl} .4$, figs. 14, 15, 16, is the largest, and bears filament, acontium, and trace of the longitudinal retractor muscle; the most dorsal of the three, marked $l .2$ in Pl. 4, figs. 14, 15, 16, bear's an acontimm, but a mere trace of the filament and longitudinal retractor muscle; the most rentral, marked $l .3$ in the same figures, is very rudimentary.

There are two micromesenteries in each ventro-lateral -extant: of these the more ventral, marked rl. 1 in Pl .4 , figs. $14,15,16$, is the larger, and hears acontium, filament, and trace of longitudinal retractor musele ; the more dorsal, maiked $v l .2$ in Pl. f, figs. 14, 1.5, 16, has a well-developed parietal muscle but no trace of filament or acontium.

Pl. 3, fig. 12 A, represents a transverse section of the median micromesentery of the right-hand lateral sextant magnified 385 diameters. The section passes some little distance above the level of the enterostome, and shows the mesenterial filament, trefoil-shaperl in section, the acontimm, and at l.r.m the slightly plicated edge of the mesogloeal lamina, to which longitudinal muscle fibres, appearing as dots in section, are attached. Pl. 3, fig. 12 b , is a similar section of the micromesentery marked l. 2 in Pl. 4 , fig. 15, i. e. the most dural of the three micromesenteries in the right lateral sextant. This section is taken at a considerably lower lesel in the column than that depicter in Pl. 3, fig. 12 A, and is some distance below the enterostome. It shows the rudiment of an whscmely tri-lobed filament, which, three sections lower down, is produced laterally into an acontimm and then disappears, and at l.r.m. the slightly plicated edge of that part of the mesogleal lamina lying between the parietal musele and the
filament, to which longitndinal muscle fibres are attached as in Pl. 3, fig. 12 A .

There can be no donbt that in both sections the mnscle fibres l.r.m. represent the rudiment of the longitudinal retractnr. The two sections, thongh taken at different levels, are placed in their relative position to one another, and it will be seen that the longitndinal muscles are vis-à-vis, so there can be no donbt that these two micromesenteries, though in different stages of development, constitute a "pair," and hare the normal arrangement of the longitudinal retractor muscles. Similarly, in the dorso-lateral sextant, the orientation of the rudimentary retractor muscle fibres on dl. 1 , Pl. 4, fig. 15, show that they are paired with dl.2, and in the rentro-lateral sextants there is similar evidence that $r .1$ pairs with rl. 2.

In making the identification of the rudiment of the longitudinal retractor muscle in certain micromesenteries, I dissent from the view put forward by Kwietniewsky (23) that the mnsculature on one side of a micromesentery is longitudinal and on the other side parietal. As is shown in all the fignres of transrerse sections $14-24$, musculature of the macromesenteries consists of the large, reniform expansion nearer to the axial than to the peripheral end of the mesentery, and confined to one side of it. This is the longitndinal retractor, and separated from it by a long tract in which the mesentery is rery thin and usually withont any trace of mesoglceal plications or muscle fibres, is a muscle symmetrically disposed on hoth sides of the peripheral end of the mesentery. In a true transrerse section the fibres of these latter muscles are cut throngh obliquely, and equally so on both sides. In this respect there is no difference between the more peripherally sitnated muscle on one side or the other. 'These obliqnely disposed fibres, distant and very distinct from the longitudinal retractors, are associated with the body-wall or paries and may properly be called parietal. When comparison is made with a micromesentery it is clear that, with the exceptions above described, the only museles of the latter are the equivalents of the
parietal muscles of the macromesenteries, and that, as a rule, Iongitudinal musculature is absent. In many Actinians e. g. conspicuously in Siphonactis, the parietal muscle on the side opposite to that which bears the longitudinal muscle is specially well developed and borne on a distinct offshoot of the mesoglœa. When thus differentiated it constitutes the parieto-basilar muscle of Hollard.

I should add here that in all the micromesenteries in which they are present the filaments are very short. The filament depicted in Pl. 3, fig. 12 a, extended over twenty-two sections 10μ in thickness and therefore had a length of only 2.2 mm . The rudimentary filament of Pl .3 , fig. 12 b , was only $\cdot 1 \mathrm{~mm}$. in length.

I have given a lengthy description of the micromesenteries becanse the detailed study of them has convinced me that, in the genus Phellia, they are formed in regular sequence, not in couples of pairs as in most dodecameral Actinians, but in couples of singles; one member of a couple right, the other left, of the median plane passing through the directives. 'The account given above affords sufficient evidence that the micromesenteries dl. 1, l. 1 and $r l .1$ are the first to be formed in each sextant. The inner end of each of them has grown centripetally and has developed a trilobed filament, an acontimm and a rudimentary retractor muscle. The next oldest micromesenteries in developmental sequence are dl. 2 , 1. 2 and $v .2$. Of these the couple $l .2$ is the most adranced in development and has acquired rudimentary filaments, acontia and rudimentary retractor muscles, these structures appearing at a considerably lower level than in the case of Il. 1, I. 1 and r.l.1. I have shown that 1. 2, l. 2 are on the way to form pairs with $1.1,1.1$, and there can be little doubt that the conples dl. 2, rl.2, though they have not acquired filament, acontia or retractor muscles, stand in a similar relation to the comples dl. $1, r l .1$. The rudimentary couples dl. 3 ,and $/ .3$ are mpaired.

The interest of these observations lies in the fact that, though they eventually become paired, the micromesenteries
of Phellia are, at their initiation, formed in couples and thus repeat the developmental rhythm characteristic of the protocnemes of all the Dodecactiniaria. 'To this extent they resemble the micromesenteries of the Edwardsida, which, as I have recently hown (4) are formed in couples of singles, but differ from those of Phellia in never forming pairs. In P. castaneathe mesenterial armangement is nearly that of Halcampa, but differs in that there are two additional micromesenterial couples, one in the dorso-lateral and one in the lateral sextants, and also in the fact that the fertile macromesenteries do not correspond in the two genera. There is another and considerable difference in that the adnlt Halcampa has only twelve tentacles, half as many as the mmber of mesenteries, whereas in P. castanea and in the other species of Phellia described anatomically in this paper and by other authors the number of tentacles corresponds closely to the number of mesenteries.

The tentacles in P. castanea are short, simply infolded over the oral dise and not invaginated in retraction as are the tentacles of Edwardsia. As ascertained by the study of sections of the retracted specimen they are twenty-four in number, arranged in three cycles of $6+6+12$, those of the two imermost cycles being endocolic and the twelve tentacles of the ontermost cycle exocolic. There are no tentacles in comection with the rndmentary micromesenteries in the dorso-lateral and lateral macromesenterial exocoles, hence the total mmber of tentacles falls short by four of the total number of mesenteries. As seen in transverse sections of the retracted specimen, the large endocolic tentacles communicate with the colenteron by wide openings, which, in the case of tho primary endocolic tentacles of the imnermost cycle, occupy the whole width of a chamber included in a macromesenterial pair, and, in the case of the secondary endococlic tentacles occupy nearly the whole space between two adjacent macromesenterial pairs. Consequently, the exocolic tentacles forming the ontermost cyele are squeezed in at the edge of the dise between the bases of the primary and secondary
endococlic tentacles, and their cavities communicate by narrow openings with the cœlenteron. The capitnlar extremities of the rudimentary micromesenteries of the dorso-lateral and lateral macromesenterial exocoles extend for a short distance into the basal parts of the cavities of the more rentral exoccelic tentacles in those chambers and come into close relation with the macromesenteries contignons to them. The significance of these details will he pointed ont later on in this paper.

The ectodermal musculature of the tentacles is not specially. well developed in P. castanea. On the outer faces of the tentacles it is weak, the longitudinally disposed muscle fibres: being supported by very short processes of the mesoglea and extending downwards as far as the upper edge of the capitnlum. On the imner or oral aspect of the tentacles the ectodermal musculature is much more highly developed in the endoceelic tentacles; its fibres, supported by conspicuons: branched processes of the mesoglea, diverge outwards at the hase of each tentacle and are inserted on the adjacent radial lines marking the attachments of the macromesenterits to the disc. The muscle fibres of the imner faces of the exoccelic tentacles converge to form a distinct bundle inserted close to the attachment of the adjacent macromesentery to the edge of the peristomial disc. The effect of this disposition is that the tentacles are flexed inwards towards the peristomial dise ly the contraction of the strong muscle fibres of their adoral surfaces, whereas the weaker muscles of their aboral surfaces come into play during the slower morements of expansion. It is further erident that the insertions of the adoral bands of tentacular muscles on the upper edges of the macromesenteries ensures the co-adaptation of function of the powerful longitndinal retractors of the macromesenteries with the muscles of the tentacles and disc. When the former contract they forcibly pull down the disc and bring about the introversion of the capitulum and upper region of the scapus; the muscles of the iuner faces of the tentacles, contracting at the same time, bend the tentacles inwards over the peristomial
disc, and as invagination proceeds cause them to assume the dependent vertical position with tips downwards shown in Pl. 3, fig. 1, t.

The ectoderm of the tentacles is abundantly furnished with nematocrsts. These are all of the small spiral variety [type I of Matthai (25), spiral cnidæ or cnidæ cochleatæ of Gosse], measuring $39 \cdot 5 \mu$ in length by $5 \cdot 2 \mu$ in diameter (see Pl. 3, figs. 6 and 7). I have found no other kind of nematocyst in the tentacles of any of the Phelliinæ that I have examined. Between the nematocyst-laden layer of the ectoderm and the museular layer is a fibrillar nerrous layer, very thin on the external faces of the tentacles where the muscular layer is weakest, but much thicker on the inner faces where the muscular layer is strongest. The nematocysts are also much more abundant and more closely crowded together on the inner surfaces of the tentacles. These relations, taken in conjunction with the fact that one never finds the spiral thread extended, suggest that this type of nematocyst is tactile rather than urticant in function. Concerning this question, and the structure and development of the different types of nematocysts found in Actiniaria, I shall hare something to say in another place.

It may be noted here that P. castanea has fewer tentacles, and correlated with this fewer mesenteries, than any other known species of the genus. P. phassonesiotes and P. allantoides described in the sequel, have 36 and 44 tentacles respectively ; P. sollasi, teste Haddon, has 48-it 4 ; P. lorowni, teste Wilsmore, has over 40 ; P. capitata has :39, plus several buds; and P. ambonensis, teste Kwietniew:ky, has 70 tentacles.

The peristome in P. castanea, as may be seen in Pl. 3, fig. 1, is deeply concare and the month gapes widely. In this it agrees with Gosse's description of P. murocincta, the type species of the genus; "disc a decp cup bounded by the thick feet of the imner tentacles" (14, p. 135). This description is in every respect applicable to P. castanea, and I am disposed to consider the concare peristome and
graping month as generic characters. Gosse says of P . gansapata, "dise a deep cup or fumel," and I gather from Wilsmore's figures that a similar description wonld be applicable to P. browni and P. capitata, though she does not make any mention of this feature in her text. The description is certainly applicable to the other species of Phellia described in the continuation of this paper. Gosse, it is true, describes Phellia picta as having " disc nearly flat or slightly concave," but in a note on this species in the appendix to the 'Actinologia Britannica' he says, with reference to additional examples sent to him from Banff: "The epidermis is very thin and deciduous and altogether the species seems intermediate between the true Phelliæ and such Sagartix as coccinea." It is therefore probable that Gosse's Phellia picta is not a member of the genus Phellia.

The peristomial disc proper, that is to say, the area between the mouth and the bases of the tentacles is very thin in P . castanea, and I conld find in it no trace of muscle fibres or nervous layer, nor are any nematocysts to be fonnd in this region. Kwietniewsky (22 and 23) and Wilsmore (31) give elaborate descriptions of the musculature of the " disc " which are perfectly consistent with the accomnt given above of the musculature of the bases of the tentacles, but I do not find, either in P. castanea or in the other species that I have examined, that the muscles extend over the peristome as defined above. The difference between my acconnt and theirs probably consists in this, that they include the whole area between the mouth and the upper edge of the capitulum moder the term "disc," whereas I only include the area letween the mouth and the bases of the tentacles in the term "peristome." My use of the term is more consistent with (Gosse's description of P. murocincta, quoted above.

The actinopharynx, as may be seen in Pl. :3, fig. 1, is large; its walls transversely wrinkled, probably as the result of contraction. Longitudinal rillges corresponding to the insertions of the macromesenteries are not very prominent.

Dorsally, there is a distinct gonidial groove or sulcnlus, in which the epithelimm is so far differentiated that it contains no nematocysts, very few gland cells, and the ciliated cells are more closely crowded and bear longer cilia than elsewhere. A similar differentiation is found ventrally in the region bounded by the rentral directive macromesenteries, but here the epithelimm bulges slightly into the carity of the actinopharynx: this is probably the result of contraction, and one may say that a rentral groove or sulcus is present, but that the dorsal gronve or sulculus is the more clearly differentiated (Pl. 4, fig. 14).

The general features of the mesenterial filaments and gonads are snfficiently well shown in Pls. 3 and 4, figs. 1, 15, and 16, and as far as macroscopical characters go they are normal and require no special description. The acontia are well developed and are loaded with large nematocysts as is shown in Pl. 3, fig. 12. The single specimen of P. castanea was rery well preserved for microscopical purposes, but I must postpone a description of histological details to another place.

Phellia phassonesiotes, in. sp.

Single, elongate; the column divisible into capitulum, scapus and expanded base. Capitnlum short; thin-walled. Scapus of leathery consistency ; pinkish-brown in colour; thickly encrusted with calcareous sand; its upper sixth introverted in contraction ; tapering towards the base. Expanded base firmly adherent below to a piece of dead coral ; its free edges folded and puckered. Tentacles 36 ; the two immer cyeles of six and six distinct, the two outer cyeles of six and eighteen incomplete and indistinct.

Length of contracted specimen 30 mm . ; greatest diameter $6 \cdot 5$ mun. ; least diameter near base 3 mm .

A single specimen from Pigeon Island, New Britain. The specific name is derived from the locality; фй $\sigma \sigma a$, a pigeon ; ingaútns, an islander.

The expanded base of this species may also be described as a physa, but I have hesitated to apply this name to it becanse it can hardly be bronght moder Gosse's original detinition as "thin, pellucid, inflatable like a bladder," and it is adherent. As shown in Pl. B, fig. 2, it is of the same pinkish-brown colour as the seapns, and has a few grains of sand attached to it, so that it can scarcely be distinguislied from the scapus on extermal examination. Histologically, however, it presents very different characters. The mesogloe of the scapus is pitted and furrowed in every direction, and in section appears to be produced into numerons lobed processes covered by a cubical or very low columar ectoderm, which is everywhere externally covered by the brown friable and apparently structureless layer called the "epidermis." In the region of the expanded base these characters change somewhat abruptly. The mesogloea, thongh thickened in some places, is generally thin; its snrface is smooth, and not produced into lobed processes ; the ectoderm is thick and composed of elongated colnmnar cells, amongst which are claviform granular gland cells; there is a well-marked external limiting membrane, staining blne in picro-indigocarmine ; but the yellowish-hrown epidermis is absent. This histological differentiation is apparent both on the face and on the adherent surface of the basal expansion.

Macronesenteries.-'These, as in P. castanea, are twelve in number, with two pairs of directives, and the rednction and disappearance of the muscle bamers of comples V and VI just below the level of the enterostome, and further down the reduction and disappearance of the minscle banners of comples III and IV is very well marked, and is clearly shown in Pl. 4, figs. 18 and 19. All the macromesenteries are fertile, the single specimen being a male. I could not find any evidence of acontia leing given off from the macromesenteries. The longitudinal retractor museles are of very large size, and markedly reniform in transverse section, the reniform outline having a deep hilns, within which the mesentery is attached. 'The dendritic character of the mesogloeal
vol. 63, part 1.—new series.
folds bearing the muscle fibres is pronomed and characteristic, and I have iried to represent it faithfully in Pl. 4, figs. 17,18 , and 19 , but the drawings are on too small a scale to bring out all the details.

There are distinct labial and parietal stomata in all the macromesenteries; the former small, the latter of considerable size, and at abont the level of the rim of the introverted scapus. The mesogloa is thickened at the lips of the stomata.

The Micromesenteries are twenty-eight in number, arranged as follows: (1) A larger pair in each of the sextants ; (2) it smaller pair, lying rentrad of the larger pair, in each of the macromesenterial exocœles; (3) a minute and rudimentary unpaired micromesentery lying dorsad of the larger pair in each dorso-lateral and lateral sextant. The last-named bear neither filament nor acontium, scarcelyrise above the level of the endoderm, and only are discoverable in the middle of the column, where they have a vertical extent of abont 3 mm . All the other micromesenteries bear trefoil-shaped filaments and acontia, and, as in P. castanea, the filaments are very short, and occur at different levels in the different cycles of micromesenteries. Thus, taking the measurements from the rim of the introverted scapns, the filaments of the ventral members of the larger pairs commence at abont 1.2 mm . below this point: those of the dorsal members of the larger pairs at abont 1.6 mm . in the dorso-lateral and lateral sextants, but at $3 \cdot 6 \mathrm{~mm}$. in the rentro-lateral sextants. The dorsal members of the smaller pairs bear filaments at 6 mm . below the measmring point in the dorso-lateral and lateral sextants, but at 8 mm. in the ventro-lateral sextants. The ventral members of the smaller pairs bear filaments at a distance of 7% mm. in the dorsolateral and lateral sextants, but at 95 mun. below the measuring point in the ventro-lateral sextants. The micromescuterial filaments are very short in every case, the longest not exceeding 1.5 mm ., and some can only be traced in half a dozen sections 10μ thick.

Every micromesentery witl a filament bears an acontinm at the lower end of the filament. In the smaller mesenterial
pairs the acontia are short and some of them rudimentary, but the acontia of the larger micromesenterial pairs are long and hang down in the coelenteron, some of them extending to the base, where they end in a tangle of convolutions.

Applying the same reasoning as in the case of P.castanea for the determination of the order of development of the micromesenteries, the facts enumerated above suggest that the first micromesentery to be formed in each sextant is the ventral member of the larger pair ; then follow the dorsal members of the larger pairs in the dorso-lateral and lateral sextants, and somewhat later the corresponding micromesenterial comple in the rentro-lateral sextants. Next in succession are formed the dorsal members of the smaller pairs, those of the ventro-lateral sextants lagging behind those of the dorsolateral sextants. Then follow the rentral members of the smaller pairs, those of the ventro-lateral sextants still lagging behind the others. Lastly, we get the rudimentary micromesenterial conples on the dorsal sides of the larger micromesenterial pairs in the dorso-lateral and lateral sextants, but in P. plassonesiotes these are not yet developed in the ventro-lateral scxtants. If I am right in judging the relative ages of the micromesenteries from the heights at which the filaments appear, the order of succession is the same as in l. castanea, but carried to a further stage, and the evidence points to the micromesenteries being formed in comples, the members of adjacent couples subsequently becoming paired.
'These inferences as to the order of succession of the micromesenteries are borne out by a study of the tentacles. 'There are 36 tentacles in P. phassonesiotes, arranged in cycles of (i) primary entocolic, 6 secondary entocolic, an incomplete eycle of 6 tertiary chtoccelic, and an ontermost cycle of 18 exocoelic. There are no tentacles corresponding to the rudimentary micromesenterics. It is advisable to postpone the discussion of the probable order of formation of the tentacles in this and the other species of Phellia to the latter part of this paper.

As in P. castanea the ectodermic musculatmre of the immer or oral faces of the tentacles is better developed than that of the outer or ahoral faces. Ingemeral, the musculature of the tentacles is melm better developed in P. phassonesiotes than in P. ćastanea, and the swollen bases of the tentacles of the inner cycles extend further inwards towards the centre of the disc, giving the appearance of a considerable peristomial musculature. But in this, as in the previonsly described species, the peristomial wall between the bases of the tentacles and the actinostome is reve thin, and no trace of muscular or nervons layers can be detected in it.

I'he surfaces of the contracted tentacles are deeply wrinkled transversely, and the ectoderm is crowded with somewhat elongate fusiform nematocrsts.

The histological condition of the single example of this speries was not good, and the tentacles, peristomial dise, and lips of the actinostome were so moll crumpled and pressed together that I conld not make ont details as clearly as in the species previonsly described. It was evident, howerer, that the peristome is deeply concave, and the actinostome an elongated oral gaping orifice.

The actinopharyns is relatively short, laterally compressed, its walls thrown into sisteen or seventeen moderately deep longitudinal ridges and furrows, which do not bear any definite relation to the insertions of the macromesenteries. As is -hown in ll. 4, fig. 17, there is a well-marked dorsal actino pharyongeal groore or suleulus, and a less pronomed rentral gronve or suleus. The epithelium was not sufficiently well besersed to allow me to say with certainty that these two groores are histologieally differentiated, but there is some evidence that they are.

The remaining features of the internal anatomy do not call fur special description. 'The acontia are rather thick, and crowded with large mematocysts, nearly all of which were everted. A large seale drawing of these nematocysts is given in 1'l. S, fig. 3.
'The sphineter muscle of 1 '. phassomesiotes is mesogloal
and rere thin. It is traceable in the greater part, and is best dereloper in the distal part of the introverted portion of the scapns. and is reduced to a single layer of circularly disposed muscle fibres lring in the thin mesorlcea of the short capitu'um, but thickens again just below the bave- of the tentacles. The endodermic circular muscles are well developed throughont the scapus, and in it- distal part coexist with the mesngloeal sphincter, but they are so reduced as to be hardlyrecognisable in the capitulum.

Phellia allantoides, n. ap.
Single, fixed : ; the colnm divisible into capitulum, *-apus, and phy-a. Capitulnm short: thin-walled. Scapus of a dirty brown colour; thinly encrusted with fine sand ; its Histal portion deeply introverted in contraction: it- surface deenly wrinkled: not tapering towards the base. Physa thiu-walled ; colourless: inflated and deeply pitted iaterally and below. Tentacles H, in four cycles of $6,6,10,2 \cdots$; the two lavt cycles incomplete.

Length of contracted specimen, 5.5m.; arerage diameter, if mm.

A single specimen from Urea, Loyalty Islands.
The specific name refers to the sausage-like shape of the contracted animal.

The thin-walled, colourless, intlated basal portion of this species may legitimately be called the physa. Its edges and lower surface are pitted by a number of round or oral depressions, the shape of which clearly indicates that they were occupied by pebbles or shingle. Some small, rounded fragments of shingle were -till sticking in the -maller cavities in the hasal eul of the physa when the specimen cane into my hands. but the pebble- vecupying the larger depressions at its sides had fallen out. From the nature of the sand encrusting the scapus one may surmise that the animal was emberded in a layer of oft, muddy sand orerlying a bed of shingle, amt that it obtainerl a firmer anchorage than the sand
afforded by adhering by means of its plysa to the shingly bed.

In all essential respects this species displays the same anatomical features as the two just described, but there are differences in detail.

The surface of the upper or introvertel part of the scapus is thickened to form prominent longitudinal ridges, which, as in P.castanea, roughly correspond to the macromesenterial exocœles, and the surfaces of these ridges are again furrowed, so that in section one gets the appearance of a number of branched processes projecting into the central cavity and nearly closing the passage to the mouth. The mesogloea is greatly thickened in these ridges. The sphincter muscle in this species is largely developed and mesogloal. It forms a thickish band at the level of the rim of the introverted scapus; is fairly thick from this level as far as the capitulum, sending prolongations into the thickened mesoglcea of the ridges described above. It becomes thimner, but is still a relatively stont muscular band, in the capitulum, and thickens again at the bases of the tentacles.

In this species the muscle fibres of the sphineter are broken up into a nomber of bands, each of which is surrounded by mesoglea, thus differing from P. castanea and phassonesiotes, but resembling browni, capitata, ternatana, and ambonensis. I am not, however, inclined to attach much importance for classificatory purposes to the sphincter.

The macromesenteries are arranged in the usual six pairs and all of them are fertile, the single specimen in the collection being a female. The lower ends of the macromesenteries are greatly enlarged, distended with nearly ripe ova, and folded in a most complicated mamer, filling up the colenteron and distending the proximal half of the scapus. The ovaries, however, do not extend into the physa. The muscle banners are very large in the region of the actinoplarynx, and their mesoglocal lamine are beautifully and regularly branched, forming characteristic dendritic figures
in transverse section (Pl. 4, figs. 20, 21). As described for P. castanea and phassonesiotes, the muscle banners of the fifth and sixth couples of macromesenteries thin out and disappear shortly below the level of the enterostome, and at a somewhat lower level the fourth and third couples follow suit, but the order of their disappearance is not quite as regular as in the two species named. In the physa all the muscle banners are lost, but the macromesenteries still predominate in size. There are small labial and large parietal stomata in the macromesenteries.

The micromesenteries are thirtr-four in number, there being six in each dorso-lateral, six in each lateral, and five in each ventro-lateral sextant. In the dorsal and dorso-lateral sextants the middle pair of micromesenteries is the largest, the pair on the ventral side of them next in size, and the dorsal pair the smallest. The dorsal member of the dorsal pair is usually minute. 'The same rule holds good in the rentro-lateral sextants, but in these only one member of the dorsal pair, and that very minnte, is present.

As in D: phassonesiotes, some of the micromesenteries bear rery short filaments; these are found at different levels, and the detail is almost exactly the same in the two species. Thms, if the highest level, i. e. the most distal from the base, is denoted by a, and successively lower levels by B, c, etc., the rentral members of the larger central pair in each exocole bear filaments at level A; the dorsal members of the same pair at level в; the dorsal members of the smaller pairs lying rentrad of the larger pairs bear filaments at level c; the rentral members of these smaller pairs at level D , except those in the rentro-lateral sextants, which bear no filaments. The smallest micromesenterial pairs lying dorsad of the larger pairs in the dorso-lateral and lateral sextants and the single micromesenteries occupying a similar position in the ventro-lateral sextants have no filaments. None of the filaments are more than 8 mm . in length.

The acontia are very small, and so rudimentary that they are easily overlooked. They are borne on most of the micro-
mesenteries that also bear filaments, but not on all, aud their distribution is irregular. The macromesenteries do not bear acontia. Snclu as they are, the acontia have the nsmal structme, and are furnished with large nematocrsts. Kwietniewsky (22 and 23) has recorded a similar reduction almost to the point of disappearance of the acontia in P. ternata and ambonensis, but in sollasi (Maguire (24)), browni, and capitata (Wilsmore (31)) the acontia are long and conspicuons. There is evidently a wide range of rariation in respect of these organs in the gemus Pleellia.

The tentacles of P. allantoides are relatively large, especially those of the two immermost cyeles. They are very miscular, deeply transversely wrinkled in contraction, have distinct muscular nervous and epithelial layers, and the last is crowded with rather elongate spiral nematocysts staining green in picro-indigo-carmine. The relation of the several cycles of tentacles to the macromesenterial and micromesenterial pairs is the same as in P. phassonesiotes, but, as the micromesenterial pairs are more mmerous in P. allantoides, the number of tentacles is also greater. There are $n 0$ tentacles corresponding to the mupaired rudimentary micromesenteries in the ventro-lateras exocoles.

T'lie ectodermic musculature of the tentacles is specially well developed; it is thicker on therr adoral than on their aboral faces, but this difference is 10^{*} : as clearly marked as in P. castanea. The muscle fibres an ? supported by long and thin mesogloal lamine, which are serondarily folded so as to give a branched appearance in section (Pl. 3, fig. 13), but there is no anastomosis among the branches as described by Kwietniewsky for P.ternata and ambonensis. 'The two immer cyeles of tentacles are inserte well towards the centre of the dise and the peristome is correspondingly rednced in extent, but, as in the two species already described, the latter is thin, has no mnsenlar or nervons layers, and is deeply concave. I'he endoderm lining the imner sides of the tentacles and romning ont in radion lines from their bases towards the actinostome is almost wholly composed of elon-
gated rasiform cells of large size, and filled with deep brown gramules of varions sizes (Pl. 3, fig. 11). 'The mature and distribution of these cells, the histological features of which are umexpectedly well preserved, indicate that in the living animal the dise is ormamented with radial stripes of colour, continued up the inner face of each tentacle.

The actinopharyux is short, not more than 4 mm. long in the contracted condition, and is longitndinally furrowed. I could not detect any definite sulcus and suleulus, the grooves at the two ends of the actinopharynx laring the same histological features as those on the lateral walls, so far as the state of preservation of the epithelium allowed me to determine.

The only other points that I need call attention to are that the endodermic musculatmre of the hody-wall is strongly developed in all parts of the body-wall, and, as las been noted for other Actinians by Haddon and others, it forms a continuons layer intervening between the periphenal ends of both macromesenteries and micromesenteries and the mesoglœea of the body-wall. The mesoglœal lamine of the mesenteries, however, are from place to place continued into the mesogloa of the body-wall. 'I'lue endoderm muscle fibres are transversely disposed in the capitulum and scapus, but take an oblique direction in the physin. 'They coexist with the -mesoglceal splancter in the capitnlum and introversible portion of the scapus, and here the layer is thin; it is thickest in the scapus, amel again thimer in the physa.

The ectoderm of the physa is modifien, and "onsists of tall colmmar epithelial cells, among which are n merous chubshaped gland cells with broad external ends, is id tapering into fine fibrils internally.

Pheldia cricionen, hesp.

Single, fixerl, wine-glass shaped, tapering from the dise downwards to the physa, whiels is Hattened and expanded. Colmmn divisible intu capitnlam, scapms, and plysa. C'api-
tulum half the length of the entire animal ; very thin-walled; transparent. Scapes not encrusted with sand; tapering below ; transversely corrugated; with firm but not thick walls. Physi expanded; thin-walled; pitted below where attached to shingle. Colonr in spirit, white.

Length, 17 mm . ; greatest diameter, 8.5 mm .
A single specimen from Urea, Loyalty Ishands. δ.
Specific name from кv入ıќúns; wine-cup shaped.
The specimen was not well prescred, the tentacles, disc, and capitulum being damaged and in part so macerated that I conld not count the tentacles or make anything of the details in the oral region.

Apparently the capitnlar wall is very thin and devoid of mesogloal circular muscle fibres. It was for the most part torn away, but the fragments remaining showed only a rery thin lamina of mesogloa, with very low cubical ectoderm and endoderm cells on its onter and imer surfaces. There is a very thin layer of endodemic transverse muscle fibres. The mesogloca is striated along its inner border, but I conld not detect muscle fibres between the striations. I conld not find any trace of a mesoglocal sphincter muscle, even at the bases of the tentacles where the mesogloa is somewhat thickened.
'The Macronesenteries are all fertile and furnished with large longitudinal retractor muscles, reniform in section, and exhibiting the msmal dendritic pattern of the mesogloal processes for the attachment of the musele fibres. Owing to the damaged state of the oral end I conld not determine whether macromesenterial stomata are present. The dorsal directives and the rentral members of the dorso-lateral and rentrolateral pairs of macromesenteries do not extend nearly so far down as the remainder, and lose their muscle banners at abont the level of the middle of the scapns, leaving only six mesenteries with muscle banners in this region. Still lower down the rentral directives lose their muscle bamers, leaving only the macromesenterial comples I and II. 'Thus, owing to the early reduction of the dorsal directives there is no region
in which the eight "Edwardsian " mesenteries are prominent as in the three species described above. Short but rather thick acontia, furnished with the large nematocysts characteristic of these organs, are given off from the ventral members of the dorso-lateral and ventro-lateral pairs of macromesenteries just below the point where the large reniform muscle bamer ends. I conld not find acoutia in any other macromesenteries nor on ant of the micromesenteries.

The Micromesexteries are twenty-eight in number, and in respect of their arrangement and relative sizes are exactlythe same as in P. phassonesiotes. But I could only find filaments on the pairs adjacent to the rentral directives and on the micromesentery n ist the rentro-lateral macromesenterial pair on ${ }^{2}$ - right side. These filaments are low down, in the region of the enterostome. It is probable enough that other micromesenteries bear filaments at a higher level in the capitnlar region, but, as the walls of the capitnlum were largely destroyed, I was unable to find them. 'There were no acontia in comection with the three micromesenteries on which I found filaments, and from the absence of portions or convolutions of acontia in the intermesenterial chambers, I judge that none of the micromesenteries bear acontia, or if they do, they are rudimentary.

Owing to their damaged condition I was mable to comnt the tentacles. So far as their condition permitted of observation they have the same characters as regards muscnlature, nematocrsts, etr, as in the other Phellia I hare described.

The actinopharynx is long and longitndinally plicated, but I conld not distinguish a differentiated sulcus or sulculus. The epithelinm is everywhere crowded with lougr claviform gland cells filled with gramules stained green in picro-indigo earmine, their narrower ends external and opening to the surface between the supporting cells.

This species differs from other Phellix in the relatively large size of the thin-walled capitulum, in the early reduction of the dorsal directive mesenteries, and, as far as conld be
ascertained, in the absence of a mesogloeal sphincter muscle. In all other characters it is a Phellia, and I have not created a new genns for its reception on accoment of the absence of a mesogloeal sphincter because, owing to its damaged condition, I cannot say anything positive on this point.

Decaphellia, h. gen.

With the characters of Phellia, but the capitnlnm has no musculatme except for a mesogloeal splincter at its distal extremity, and there are only ten complete macromesenteries bearing longitudinal retractor muscles.

Decaphella pammomtra, in. sp.

Single, fixed (\because) ; the collmm divided into capitulum and scapus; the base inraginated to form a cup. Capitulum nearly half the length of the entire animal ; very thin-walled; inflated; transparent ; colonless in spirit; its surface showing ten longitudinal ribs corresponding to the insertions of the macromesenteries. Scapus divided into two regions; the npper region thimer-walled and thickly encrusted with calcareons sand; the inferior region thicker-walled, deeply and completely corrngated, covered by an epidermis but without encrustation. Base deeply concave; covered with a high columnar epithelinm. 'Tentacles 2-4, m three cycles of 6, $6,1 \because$.

Length, $7 \cdot \frac{\pi}{} \mathrm{~mm}$. ; greatest diameter, 2.75 mm .
Two specimens from Lifn, Loyalty Islands.
The specific name refers to the prominent girdle of sand
 a girdle.

The ahsence of muscles of any kind on the wall of the greater pant of the capitulum and the reduction of the rentral members of the rentro-lateral pairs of macromesenteries are characters of sufficient importance to justify the creation of a new genns for the reception of this species.

Pl. i, fig. 24, is a drawing of a transverse section passing through the concave peristome and inchuding the bases of some of the tentacles; as the section falls obliquely the thickened lip of the actinostome is incinded on the right of the section. The figure shows teu complete macromesenteries, having small but well-defined and prominent muscle bamers closely attached to the wall of the disc. Dorsal and rentral directives are present with the muscle banners dos ì dos, and the dorso-lateral pais are complete. 'The rentrolateral pairs are incomplete, as their rentral members, though recognisably longer than the zery minute micromesenteries, do not reach the disc, and have no trace of longitudinal retractor muscles. Pl. 5, fig. 2:3, is a transrerse section taken through the scapus, a short distance below the enterostome. As the specimen was laterally curved, the section is not truly transerse to the axis of the animal and appears elongated laterally. Nine mesenteries bearing longitudinal retractors are seen, the ventral member of the dorsolateral pair being reduced on the right side, luat not on the left. There is no further reduction, the nine mesenteries in guestion being continnel down to the base without much further alteration except that their mesogloeal lamine are greatly thickener in the lower region of the scapus and the retractor muscle gradually shift, from a more central to a more peripheral position. Thinking that this umsual asymmetry of the macromesenteries munt be an individual peculiarity, I made sections of the second example at my disposal and found exactly the same arrangement, and must therefore conclude that the presence of ten macromesenteries bearing retractors in the upper part of the column and the reduction of the number to nine in the lower part is a chatacteristic of the species. The macromesenteries are perforated by relatively very large parietal stomata at the level of the upper edge of the scapus, but there are no labial stomata, and in this respect also Decaphellia differs from Phellia, for these perforations are always present in the latter genus.

Neither of the two examples in the collection showed any trace of gonads, and mutil sexnally mature specimens are found there must be some donlt as to the inclusion of Decaphellia in the Phelliinæ, for it is a characteristic of the subfamily that only the macromesenteries are fertile. But from the very small size of the micromesenteries it seems improbable that they shonld bear gonads in Decaphellia.

Pl. S, fig. -4 , shows the extreme tenuity of the capitular wall. It is composed of a very thin lamina of mesogloa covered externally and internally by a layer of very flat ectoderm and endoderm cells. There is no trace of transverse endodermic muscular fibres in the greater part of the capitular wall, nor is there the slightest trace of mesogloeal muscle. It is also noteworthy that neither macromesenteries nor micromesenteries exhibit any trace of parietal muscles in any part of the capitulum, but, as Pl . 5, fig. 23, shows, the parietal muscles of all the mesenteries, thongh not large, are perfectly distinct in the region of the scapus, and correlated with their appearance is the presence of transrerse endodermic musculature in this region.

At its extreme distal end, just below the outer cycle of tentacles, the cupitular walls thicken, ectoderm, mesogloea, and endoderm, but especially the mesogl@ea, taking their share in the thickening. In this region the endodermic transverse musculature reappears, and there is a distinct mesogloeal sphincter muscle, abont "os mm. in vertical extent. The muscle fibres of the sphincter are few, relatively coarse, and form a single strand.

The micromesenteries are twelve in number; one pair in each sextant. They are tiny and scarcely recognisable projections from the very thin body-wall in the capitulnm; in the scapms they acquire the usmal feather-shaped parietal muscles, but never attain to any size, and in most places are mere ridges projecting but little beyond the general level of the endoderm. Their free edges are covered throughout the region of the seapms, but never in the capitulum, by a band of monlified endodermi: epithelimm, in which the cells are
more distinctly colmmar, and have more deeply-staining muclei than the adjacent irregularly shaped racuolated endoderm cells. At about the level of or slightly below the enterostome the micromesenteries are enlarged in depth, the mollified epithelial cells invest their sides and tips and become thinner and colnmmar, their deeply-stained and closely crowded nuclei forming conspicnons objects in section. At a slightly lower level the modified epithelium covering the now swollen end of the mesentery is deeply puckered and thrown into a series of ridges and furrows constituting a "frill" (Pl. 3, fig. 10), which may be traced for a distance of abont $\cdot 1$ or $\cdot 2 \mathrm{~mm}$. and then disappears, the mesentery again becoming a low and inconspicuons ridge. In the region of the frill the swollen extremity of the mesentery gives off a lateral process which is at first slender and somewhat trilobed in section, bat after a shorter or longer course is somewhat enlarged in diameter, and displays the histological characters of an acontinm, with the usual large nematocysts and gland cells always found in these organs. An acontimm of greater or less length is giren off from every micromesentery, but none from the macromesenteries.

There can be no doubt that all the elements of the "frill" and the acontium are derived from the endoderm. The acontia are of consideralle length relatively to the size of the amimal, and pass through the macromesenterial stomata from one intermesenterial space into another, so that their course and origin is difficult to trace in sections: they usually end in a tangled convolution. 'They can readily be distinguished from the median lobes of the mesenterial filaments by their shape and by the fact that they contain a number of large nematocysts of the type depicted in Pl. 3, fig. 8. These are not present in the mesenterial filaments, but occur in the actino-pharyngeal epithelinm.

The tentacles are muscular, the arrangement of the mascle fibres being the same as in the Phellia previonsly described. The muscle-fibres are relatively large, and the mesoglœeal lamina supporting them are mblonched and not very long.

In both specimens at my disposal the tentacles were contracted to mere papille and their surfaces deeply transcersely wrinkled. The ectoderm is crowded with spiral nematocests (Pl. 3, fig. 6) so closely packed together as the result of contraction that the other elements of the ectoderm are hardly: distinguishable.

By simple inspection one can count twentr-fonr tentacles arranged in an inner circle of twelve larger alternating with an onter circle of twelve smaller. Sections show that there are three cycles; a macromesenterial endocolic cycle of six ; a micromesenterial endoctelic crele of six and an onter exocœlic crcle of twelve. The relation of the tentacles to the mesenteries mar, therefore, be described as trpical. It should be noted that, althongh the rentral members of the ventrolateral pair's of macromesenteries are incompletely developed, the tentacles correspouding to these pairs are fully developed. In all these character: Decaphellia resembles Phellia, as also in the distinct deeply concare and thin-walled peristome, in which neither muscular nor nerwous layers can be distinguished, and in the widely gaping actinostome.

The actinopharrux is long, extending throngh the capitulum and well into the upper region of the scapus. Both sulcus and sulculus are well developed, and are lined by an epithetium consisting wholly of attenuated flagellate cells, whose flagella, though not very long, are conspicnonsly longer than the cilia borne by the rest of the actinopharyngeal epithelimu. 'The mesogloa of the actinopharyngeal wall is thickened at the insertion of each of the macromesenteries, and the epithelium covering these ridges is also thicker than elsewhere, forming ten longitudinal ridges in the upper moiety, but only nine in the lower moiety of the actinopharyn., for the ventral member of the dorso-lateral pair of the right side is already reduced in the latter region. At the enterostome these nine ridges, covered by a highly glandular epithelium in which there are mumerous large nematocysts, are continned into the median cnidoglandular lobes of the trefoil-shaped mesenterial filaments.

The base is deeply invaginated and its cupped surface corrugated with irregular ridges and furrows. The ridges are covered with a high columnar epithelimm, the cells of which radiate fan-wise from the summit of each ridge and their swollen external extremities are either filled with minute granules staining greyish-blue in picro-indigo carmine or are empty, with more or less collapsed walls. Internally, these cells are prolonged into fine fibres terminating in definite enlargements which I camot interpret otherwise than as muscles-fibres. The presence of ectodermic muscle-fibres elsewhere than on the tentacles and oral disc is a primitive feature, but in this case there is mo ectodermal musculature on the wall of the column as in the Cerianthidre and in Carlgren's group Protanthea. The endodermic musculature of the base is highly developed and apparently forms an illdefined sphincter, some of the fibres of which are here, as elsewhere in the column wall, canght up in and surrounded by irregular processes of the mesogloea; but one can hardly speak of a mesogloal sphincter in the base. The ectodermal and endodermal muscle-fibres are comnected by very fine but distinct branching fibrillæ, apparently of a nervous nature, which traverse the mesoglœa and some enter into comection with stellate cells imbedded in the mesoglœa.

As is shown in Pl. 3, fig. 5, a tuft of short root-like processes projects from the cavity of the invaginated base. In sections these appear as a tangle of thread-like structures continuous with the cuticular secretion which is everywhere atherent to the surface of the glandular basal ectoderm, but nir definite structure could be detected in them. 'They are duubtless used for attachment. The invagination of the base, at feature common in Actinange richardi and other Chondractinide, is undoubterlly effected by the powerful longitudinal retractor muscles of the macromesenteries which rum right down to and are inserted upon the thick mesoglceal swellings of the lower ends of the macromesenteries just above the spot where the latter are attached to the base. Similar conditions exist certainly in Phellia castaneatand probably vol. f:), PART 1.—NEW SERIES.
in the other Phelliæ which I have described, but the state of preservation of the latter did not admit of so careful a study of detail as in Decaphellia psammomitra. In his definition of the genus Actinange Verrill said of the basal disc that it " may be broad and flat, adherent, or it may lie bulbons, clasping mud, or it may enslieathe the branches of Gorgoniæ, etc." From what precedes it is evident that there is a similar capacity for change of form and adaptability to varying conditions in the Phelliinæ. When the longitudinal retractor muscles are relaxed the base may assume a bulbons condition as in Phellia allantoides, and it is then intermediate between the vesicular physa of the Ilyanthide and Edwardsidæ, and the more or less flat adherent base of the more common Actinians.

A transverse section through the scapus of Decaphellia is singularly like Faurot's figures of sections of Halcampa chrysanthellum (loc. cit., Pl. 8, figs. 2, 5, and 4) the shape and size of the muscle bamers of the macromesenteries, the arrangement and convolutions of the mesenterial filaments, and the number and characters of the micromesenteries being strikingly similar. The main differences in addition to the peculiar reduction in number of the macromesenteries in Decaphellia are the corrngated extermal surface and the presence of acontia in the latter genus. The acontia are the dividing factor; were it not for their presence one could scarcely hesitate to include Decaphellia among the Halcampina, and the conclusion that these forms are closely related is irresistible.

This conclusion is strengthened by a consideration of the external and anatomical features of Halcampactis (Farquhar, 12). This extremely interesting little New Zealand Actinian has a distinct capitulum; a scapus covered in life by a thin, rough, greyish cuticle; a rounded aboral extremity, not clearly marked off from the scapus, but which one must agree with Farquhar in calling a physa. I gather from Farquhar's accomnt that the tip of the plysa is invaginated in certain conditions of retraction. The capitnlum is capable of intro-
version. There are six pairs of macromesenteries bearing strongly developed circumscribed retractor muscles resembling those of Halcampa and six pairs of micromesenteries alternating with them. Though Farquhar does not say anything on the subject, I gather that the macromesenteries alone are fertile. The tentacles are twenty-four in number; six primary endocœlic, six secondary endocœlic, and tiventy-four exocœlic. Acontia are present and are emitted through the mouth only; there are no cinclides. I was in some doubt as to whether I shonld not place Decaphellia psammomitra in the genus Halcampactis, but H. mirabilis has minute suckers on the body-wall, and, according to Farquhar, no sharply-defined circular muscle. These two characters exclude it from the Phellinæ as defined by Haddon, but, as it has well-developed acontia, it cannot be placed among the Halcampinæ. If, as I venture to suggest will be found to be the case, a study of sections should show that there is a distinct though not necessarily "well-defined" circular muscle, Halcampactis would certainly find a place among the Phelliinx, always supposing that its macromesenteries alone are fertile. Should the opposite be the case, and its micromesenteries alone be fertile, it would find its place among the Chondractinimæ, and would comect this sub-family with the Halcampine. Further details of its anatomy are greatly wanted.

> On the Probable Order of Appearance of the Tentacles in the Phelliinæ.

Faurot (13), in his admirable "Etudes sur les Actinies," gives a detailed accontut of the order of appearance of the tentacles in llyanthus parthenoprus and 'lealia (Urticina) felina, Although the final results are different, owing to the assumption of a secondary decameral symmetry by Tealia, the developmental sequence is fundamentally similar in these two forms, and the rule probably holds good for all the Actiniix. In the earliest stage of Ilyanthus parthenopans there are six pairs of mesenteries and
twelve tentacles ; six endocolic and six exocolic. On the formation of the six pairs of secondary mesenteries a new cycle of six tentacles is formed, prolonging the endocoeles of the newly-formed mesenteries. The original exocolic tentacles are therefore pushed to one side, namely, to the dorsal side, in the dorso-lateral sextants, and to the rentral side in the lateral and ventro-lateral sextants. No new exocolic tentacles are formed at this developmental phase, but on the formation of the next cycle of twelve tertiary pairs of mesenteries as many new tentacles are formed, prolonging their endocœeles. Thus a stage is established in which there are twentr-four pairs of mesenteries and twenty-four endocolic tentacles corresponding to them, but only six exocœlic tentacles. During this stage, which is of considerable duration, the secondary and tertiary endocolic tentacles grow more rapidly than the six exocœlic and soon overpass the latter in size. The full number of forty-eight tentacles characteristic of the adult Ilyanthus parthenoprus is attained by the formation of eighteen exocœlic tentacles, one for each exocœle hitherto uuprorided with these appendages, and the end result is a regular alternation of endocœelic and exocœlic tentacles. This somewhat devious method of arriving at the simple tentacular symmetry of the adult is explained by Faurot on mechanical principles, but these do not suffice, for, if it were simply a question of growth where there is most room for expansion, one would expect each member of a new pair of secondary mesenteries to be formed, one on the one side, the other on the other side of the base of the primary exocolic tentacle in each sextant of the first developmental phase. If this were so, the primary exocolic tentacle would become secondarily endcoelic, and a comparable mode of growth actnally does occur in the formation of the calcareons septa in Eupsammid corals (see Pourtalès, 26 ; Duerden, 11 ; Bourne, 3). But in the growth of the tentacles in Actiniiæ the primary exococlic tentacles never are included between the members of a pair of mesenteries and therefore never become endocoelic. So far from the line of least resistance
being followed there is, as Faurot clearly shows, a good deal of crowding in some radii, but room for free expansion in others. The peculiar course of development, therefore, must receive an explanation on historical and phylogenetic rather than on mechanistic principles, and some clue is afforded by the study of the relations of the tentacles to the several orders of mesenteries in the Phelliinæ.

The reader will have observed that, in respect of the number and arrangement of the micromesenteries, Phellis castanea, phassonesiotes, and allantoides form a regnlar series. In the first-named there are sixteen, in the second twenty-eight, in the third thirty-fom micromesenteries. In cylicodes the number and arrangement is the same as in phassonesiotes, and in Decaphellia psammomitra, the examples of which were probably adolescent, as they did not contain gonads, there are twelve micromesenteries. In P. sollasi Maguire describes fifty-five micromesenteries, and the nnmber is apparently greater in P. panamensis Verrill. In all these species there is a distinct dorsi-ventrality in the distribution of the micromesenteries: they are more numerons in the dorso-lateral and lateral than in the ventro-lateral macromesenterial exocoles, and in each sextant the smaller and presumably more recently formed mesenteries appear first on the ventral and later on the dorsal side of pre-existing micromesenterial pairs -a fact which arrested the attention of Kwietniewsky, but he did not attempt to explain its significance.

In the following argument objection may be taken to the fact that I am drawing inferences as to derelopmental sequences from the comparison of stages observed in different species, and not from stages observed in the development of a single species. I must admit the validity of the objection, but may be allowed to reply that, though it has been desirable, in accordance with the rules of nomenclature, to describe the forms here dealt with as separate species, the possibility of several of them being growth stages of one and the same species is by no means excluded. And even if this
canuot be admitted-I am not inclined to press it-there is much evidence that the Phellia, like many other Actinians, are so far prodogenetic that they increase in size and add to the number of their mesenteries and tentacles long after the attainment of sexnal maturity. The differences in the number of micromesenteries, therefore, may fairly be taken, not as specific characters, but as indications of earlier or later growth stages in the individuals examined. To this extent, then, they may be dealt with as if they were a developmental series.

The accompanying text-figures are diagrammatic representations of the relations of the tentacles to the mesenteries in (A) Phellia castanea, (B) phassonesiotes, (c) allantoides. In all the diagrams the primary endocœelic tentacles are marked 1 , the secondary endocœelic tentacles 2 , the tertiaries 3 , and the exocolic tentacles, in the order of theirsnecession, $x^{\prime}, x^{\prime}, x^{\prime \prime}$, and $x^{\prime \prime \prime}$.

Let us first consider the ventro-lateral sextant in A. There are two mesenteries, of which the larger bears a filament and was the first to be formed. Its fellow is shorter, bears no filament, was formed in close association with the primary macromesentery on the dorsal side of it, and is still closely approximated to it. There are three tentacles, of which the central prolongs the endocole formed ly the two micromesenteries and is the secondary endocolic tentacle, 2. The most rentral, x, is the original exocolic tentacle, now displaced ventrally by the formation of the new tentacles on its dorsal side. The most dorsal is the secondary exocolic tentacle growing ont in the space between the smaller micromesentery and the adjacent macromesentery. The lateral and dorso-lateral sextants exhibit the same features, but in both there is a very small micromesentery, which, at the edge of the disc, seems to grow ont of the angle between d, the original exoccelic tentacle, and 1 , the primary endocolic tentacle ventrad of it. This single mesentery does not form a bonndary to any definite intermesenterial chamber, whether an endoccele or an exocole, and no tentacle has been formed
in comnection with it, for there is no intermesenterial chamber to prolong. The next stage in advance is to be found in the rentro-lateral sextant of в. Here the smaller or tertiary pair of mesenteries has been completed by the formation of a second micromesentery on the rentral side, and the new endocoele is prolonged into the tertiary tentacle, 3 , to the ventral side of which appears the tertiary exoccelic tentacle,

Text-fig. 1.

Diagrams showing the relations of the tentacles to the mesenteries in A. Phellia castanea; 3, Phellia phassonesintes; c. Phellia allantoides. 1,2,3. Endoccelic tentacles in the order of their development. $x . x^{\prime}, x^{\prime \prime}$. Exocolic tentacles in the order of their development. For further description see text.
$x^{\prime \prime}$. In the lateral and dorso-lateral sextants the arrangement is similar, but here a very small, single micromesentery appears at the edge of the disc in the angle between x^{\prime} and the adjacent primary tentacle dorsad of it. As before, no tentacle has grown ont in comection with the mpaired micromesentery. This condition reappears in the rentrolateral sextant of c, but in the lateral and dorso-lateral sextants the dorsal pair of tertiary mesenteries is completed
by the growth of another micromesentery on the dorsal sideof that already existing in the ventro-lateral sextant. Thus there is a new endocole prolonged into its appropriate tentacle, and a quatemary exocœlic tentacle is growing out between it and the adjacent primary tentacle.

It is sutficiently evident from Magnire's figures that when the number of micromesenterial pairs is increased their development follows the same rhythm.

The facts to which I especially wish to draw attention are that the micromesenteries make their appearance in comples and not as complete pairs ; that a pair is always established by the growth of an additional micromesentery between the one first formed and the adjacent macromesentery ; and that a new endoccelic tentacle does not grow ont until the micromesenterial pair of its appropriate endocœele is completed. As a consequence of this snccessive formation of the parts peripheral growth is gradual, and there is no crowding of the elements in comrse of formation.

The accompanying series of diagrams, Text-fig. - , $u-h$, wilk enable the reader to institute a comparison between the growth processes and succession of the mesenterial pairs and tentacles in Phellia and Ilyanthus. A tangential section throngh a single sextant is represented conventionally in each. figure ; the primary, secondary, and tertiary endoccelic tentacles are lettered 1,2 , and $3 ; x$ is the primary exocolic tentacle, and the remaining exocolic tentacles are lettered x^{\prime}, $x^{\prime \prime}$, etc., according to the order of their appearance. The different lengths of the mesenteries indicate their respective ages, the longest being the earliest formed.

In a is depicted a sextant bounded by two primarr macromesenterial pairs in Phellia. In the preceding stage (not fignred) there was a single endocolic tentacle. In the stage fignsed a micromesenterial pair has been formed by the development, first of the longer, then of the shorter of the two micromesenteries shown in the diagram. 'Tho somondarv tentacle, 2, has ornown uaiturm the newly formed micromespnt
suterial endocole, and has displaced the primary endo-
cerlic tentacle, n, towards the right, which is conventionally taken to be the ventral side. In b a secondary exocœlic tentacle, x^{\prime}, has spronted lietween the secondary tentacle, 2 , and the adjacent primary endocole, and at the same time a new micromesentery has been formed to the right of x, apparently from the angle between it and the adjacent

Text-fig. -

Diagrams of tangential sections showing the succession of the mesenteries and tentacles in Phellia. Ilyanthus parthenopæus and Edwardsia cornea. $1, \underline{2}, 3$. Primary, secondary, and tertiary endoccelic tentacles. x. The primary exoccelic tentacle. $x^{\prime}-x^{\prime \prime \prime}$. The remaining exocolic tentacles according to the order of their appearance. For further description see text.
primary endocolic tentacle. In a a fellow has been added to the new micromesentery on the right or ventral side, and the two constitute a mesenterial pair of the third order, of which the endocole is prolonged into the tentacle 3, and an exocolic tentacle, $x^{\prime \prime}$, has spronted from the interval between it and the adjacent primary endocole. At the same time a single rertiary micromesentery has been formed in the angle between
x^{\prime} and the left or dorsal primary endocœelic tentacle. 'This is the condition found in the lateral and dorso-lateral sextants of Phellia phassonesiotes. In d a fellow has been added to the tertiary micromesentery of the left side; the exocæle of the pair so formed has been prolonged into the tentacle, 3 , and a new endoccelic tentacle, $x^{\prime \prime \prime}$, is sprouting from the interval between it and the adjacent dorsal primary endocœele. This condition is found in the dorso-lateral and lateral sextants of Phellia allantoides. It should be noted that new elements are added alternately on the left (dorsal) and right (ventral) side of the primary endococlic tentacle, x, which eventually becomes submedian in position, though the actual median tentacle in the sextant is 2 , which was formed after x. It should further be borne in mind that, for the sake of economising space, more than one growth stage is included in each diagram: it wonld take double the number to represent each successive addition of micromesenteries and tentacles.

Diagrams, e-g, copied from Fanrot (13), illustrate parallel stages in the development of Ilyanthns parthenopuus. In e the two members of a pair of secondary mesenteries with their corresponding tentacle have appeared simnltaneously on the ventral side of the primary endocœlic tentacle x. In f two pairs of tertiary mesenteries have appeared; one pair, either the larger and earlier in order of appearance, on the ventral side between the secondary tentacle and the ventral primary tentacle; the corresponding rather smaller and later mesenterial pair between the primary endocœlic tentacle x, and the dorsal primary endocœle. Both tertiary endocueles are prolonged into tentacles, but with the exception of the primary exocolic tentacle x, there are no exucrelic tentacles. There has been no room for these owing to the comparatively rapid formation of the secondary and tertiary mesenteries in pairs, and their development is postponed till the stage represented in g, when the three exocolic tentacles lettered x^{1} are formed simultaneonsly, and make up the full complement of tentacles for the sextant. In this case
the primary exocolic tentacle x is again submedian in position (but on the dorsal instead of, as in Phellia, on the ventral side of the secondary endocœlic tentacle), and the new elements are added alternately on the rentral and dorsal side of it, thongh not so obviously so as in Phellia. But I think it must be conceded that the growth process in the latter genus has every appearance of being the more primitive, and that the peculiar features of the sequence of tentacular growth in Ilyanthus receive an intelligible explanation if we regard the second methorl as derived from the first.

Now Phellia has this much in common with Edwardsia that in both the micromesenteries are formed in couples of singles. There is no pairing of the micromesenteries in Lidwardsia, but in Phellia the members of adjacent couples combine to form pairs, and it is difficult, though, as I will show, not impossible. to suggest a scheme by which this fundamental difference between the two genera can be bridged orer. To make use of Menrlelian terminology, it would appear that in Actinian phylogeny a factor for "pairing" was introduced at a certain stage in ontogenetic development. 'I'his factor primarily affecterl the metacnemes; that is to say, all mesenteries formed subsequent to the eight protocnemes, but it carried with it secondary consequences in the relations and mode of succession of the tentacles. For-leaving for the moment out of account the dorsal and ventral directives-as there are $n 0$ mesenterial pairs in Edwardsia there is no division into endocolic radii-in which no further growth by addition of parts takes place, and exocoelic radii in which such growth does take place, and in the absence of such a division the metacnemial growth processes of the Edwardsidæ are not comparable with those of the Actiniiz. But a reference to Text-fig. 2, h, founded on my recent demonstration of the serpence of micromesenterial and tentacnlar formation in Edwardsia carnea (4), shows a certain parallelism between the growth principle in the two cases, for in Edwardsia new mesenteries and new tentacles are formed alternately dorsarl and ventrad of the primary megacolic tentacle x, which
thus assumes a median position in each growth-sextant, and is actually median when the number of tentacles is an uneven number. And, if one keeps in view this principle of the addition of parts alternately dorsad and ventrad of the median tentacle in each sextant, it is possible to construct a scheme showing the derivation of the Actinian from the Edwardsian mode of growth. For if the first-formed micromesentere in a growth-sextant of Edwardsia-that on the left in the diagram h-were formed as a pair instead of a single and if a tentacle grew out of the endoccele thus established, one would get the same relations of micromesenteries to tentacles as in diagram a. And, again, if the micromesentery on the right in diagram h were, in succession, to be formed as a pair instead of a single, one would get a stage actually represented in Phellia, but not represented in any of the diagrams in the 'Jext-fig. because, as noted above, two or more successive growth stages are represented in each diagram for ecomomy's sake. Such a scheme would be perfectly legitimate for the dorso-lateral megacoeles of an Edwardsia, and I have accordingly, in diagram h, represented the muscle bamers of the macromesenteries in the position they would occupy in such a megacole. But in the lateral and ventrolateral megacoles the scheme is somewhat vitiated by the necessity of taking into account the macromesenteries v and vi in order of Actinian development, which, pairing with ii and i, make up six primary mesenterial pairs of the Actiniix. The difficulty is not insuperable, for, as I have shown elsewhere, the order of appearance of the micromesenteries is reversed in the ventro-lateral megacoles of Edwardsia carnea, ant may be reversed in the lateral megacocles in other species, and one has only to suppose that the mesenteries first formed in these sextants become macromesenteries in order to arrive at the paired hexameral condition. This form of argument, however, is extremely hypothetical, and I do not propose to push it any further. It is sufficient for present purposes if I have succeeded in interpreting the facts of the developmental succession of the
mesenteries and tentacles in Actiniiz as represented by Ilyanthus by reference to the simpler and more primitive succession observed in the Phelliinæ, and if I have further established certain analogies between the growth processes in the Phelliinæ and those in the Edwardsix.

It remains to discuss the relationships of the Phelliinæ with other Actiniix, a task which, in the present state of our zoological knowledge, presents considerable difficulties. Proceeding on the accepted methods of systematic zoology, we may accept, as the definition of the family Sagartiidæ, "Actiniiæ provided with acontia," and it follows logically that the Phelliinæ are included in the Sagartiidæ. As to the limits of the Phelliinx, I think there can be no donbt that the genus Phellia, with Decaphellia and possibly Halcampactis, form a group distinct from the Chondractiniinæ of Haddon, who, in my opinion, has already sufficiently established the validity of the latter family, and a study of sections of Paraphellia expansa, Haddon, has satisfied me that there is little in common between this genns, long since included in the Chondractiniinæ, and the Phellinæ. Paraphellia is anatoniically very similar to Sagartia. As to the nearest affinities of the Phelliinæ, it has been obvious, in the course of this paper, that I regard them as most closely related to the "Actinies pivotantes" of French authors, the Ilyanthidr of Gosse. But then arises the question as to what forms should be included in this somewhat heterogenosns gronp. Certainly not the Edwardsie, for reasons which I have already griven (4). Observations that 1 have made, lut not yet completed, on the anatomy of Ilyanthus mitchellii, Gosse, indicate that this species is quite distinct from the others commonly grouped with it. I am doubtful of the near relationship of Siphonactis to Halcampa, and am mable to express an opinion on Eloactis as I have not had an opportunity of sturying this genns. There remain the genera Halcampa, Halcampella, and Halianthella, which I prefer to group together in a family Halcampida, notwithstanding the
presence of a mesoglœal sphincter muscle in Halianthella, and I agree with Andres in separating these forms from the other "Actinies pivotantes." It is to the Halcampidæ that the Phelliinæ appear most closely related, rather than to the Sagartiidæ, for reasons which I will set out at fnll length.

The structmal and extermal features which, taken in combination, are the recognisable marks of the members of the Phelliinæ are:
(1) The division of the column into capitulum, scapus, and a more or less inflatable but adherent base or physa. (2) The corrngation of the external surface of the scapus, correlated with the presence of a coriaceuns insestment known as the cuticle or epidermis. (3) 'The predominant size and importance of the six pairs of primary mesenteries which alone are attached to the actinopharynx. (4) The dwarfed condition of the secondary, tertiary, and, when present, of the other cycles of mesenteries, which are rednced to little more than a lamina supporting the parietal muscles. (5) The relatively considerable development of the parietal musculature, and its symmetrical arrangement on either side of the peripheral edges of the macromesenteries and micromesenteries. (6) The great development and circumscribed character of the longitudinal retractor mnscles of the macromesenteries, and the reniform shape of these muscles in section. (7) The capacity for introverting the distal third of the scapus as well as the capitulum, correlated with the great development of the retractor muscles. (8) 'The reduction to the point of suppression of the longitudinal retractor muscles of the micromesenteries. (9) 'The fertility of the macromesenteries only. (10) The sterility of the micromesenteries. (11) 'The presence of a mesoglœal sphincter muscle. (12) The presence of acontia. (13) 'The reduction of the peristomial musculature, cansing the actinostome to gape.

As far as can he julged from the evidence afforded by simple observation, all members of the Phellinæ breed true to these characters ; but, as I have shown, every character is subject to considerable variation within the group. A critical
study of these marks or characters shows us that, whilst all of them taken together constitute what we call a Phellia, there is hardly one of them that is pecnliar to the gronp, unless it be No. 13. Nos. 9 and 10 are in a large measure peculiar and differential characters, but not wholly so, for, as I have shown, there is probably an infertile conple of macromesenteries in Phellia castanea-a feature which approximates this species to Halcampa, in which the macromesenterial couples i-1i1 are alone fertile. Halianthella, Kwietn., a member of the same family as Halcampa, has all the six pair's of macromesenteries fertile and no others, and thus is in exactly the same condition as Phellia.

On a further analysis of the characters enumerated above, we find that those which are not differential are distributed sporadically in several gronps of Actiniinæ, and occur in different combinations in those groups. Thus, character 1 is found in the Edwardsidx, Halcampidx, in Ilyanthns, in Siphonactis, and in other forms in rarions degrees of distinctness. Character 2 is shared by the Edwardsidæ and Chondractiniinæ, and by Aureliania, Gosse ; Capnea, Gosse ; and Ammonactis, Verrill. Characters 3 and 4 reappear in the Halcampidæ, Metridiinæ, Chondractiminæ, and in Siphonactis (I do not include the last-named among the Halcampide). Character 5 is found in the Edwardsidæ and Halcampidæ, in Eloactis, Andr., and generally in all forms that have very highly developed and circumscribed retractor muscles, but also in some Chondractiniine, e.g. Hormathia, in which the retractors are diffuse. Characters 6 and 7 are found in Edwardsidæ, Halcampidx, and Eloactis, and among the Chondractiniina in Paraphellia expansa, which has large circumscribed retractor muscles on the macromesenteries, but, as far as I have been able to obserw, no capacity for introverting the upper part of the scapus. Character 8 goes, as a rule, with character 6 , but in l'araphellia expansa, and generally in the Chondractiniinæ, longitudinal retractor muscles are present on at least the higher orders of micromesenteries, whether the retractors of the macromesenteries
be specially developed or not. Characters 9 and 10 are elsewhere found only in the Halcampidæ, including Halianthella in this family. Character 11 is found in all members of the family Sagartiidæ (auctt.) except Aiptasia, but also occurs in the Paractidæ and in Halianthella. Character 12 has hitherto been regarded as diagnostic of Sagartiidæ, but it should not be forgotten that analogons, though not exactly similar, structures are characteristic of the Cerianthidæ.

From this analysis it appears that of the thirteen characters emmerated as marks of the group Phellinæ, no less than ten, and in part an eleventh, recur in the Halcampidæ (including the Halianthinæ) ; six recur in the Edwardsidæ; fomr, and in part a fifth, recur in the Chondractininæ, four in the Metridinæ, and two only in the Sagartiinæ. If we may judge of the relationships of animals, and therefore of their places in a matural classification, by the sum of their characters rather than by one or two somewhat arbitrarily selected, the Phelliince certainly incline on the balance towards the Halcampidæ rather than towards any other of the sub-families commonly included in the Sagartidet.

The main reasons for including the Phellinæ in the Sagartiides are the presence of acontia and of a mesogloeal sphincter muscle. But Halcampactis, in all other respects a Halcampid, has acontia, and Halianthella, in all other respects a Halcampid, has a mesogloeal sphincter muscle.

Are we to regard Halianthella, Halcampactis, and the Phelliine as the representatives of a stage in the evolution of Sagartix with acontia and a mesogloal sphincter mnsele from a Halcampa-like ancestor ? Assuredly not as representatives of the direct line of descent, for in the first place Halianthella has only one and Halcampactis the other of the required characters ; and in the second place the differences between the mesenterial arrangements of the Phelline and the Metridiinæ, Sagartiins, Chondractiniina, and other groups inchded in the sagartiide are so great as to be fundamental Then the two lines, or possilly the several lines represented hy the different families, most have diverged at an early
period from a common ancestral stock which had acquired acontia, and is now possibly represented by Halcampactis, though Halcampactis has not acquired a mesogloal sphincter, whilst Halianthella, which possesses no acontia, has.

Such an argument assumes that the possession of acontia is a mark of close genetic relationship and involves the inclusion of a heterogeneous group of Actinians, among other:s Aiptasia, in the family Sagartiidæ, the limits of which have been the subject of much discussion (see Andres (1), Hertwig (19), Kwietniewsky (22), and Haddon (15)). But is it not possible that acontia, which cannot be regarded as anything else than a special modification of the ubiquitons mesenterial filament, may have been independently acquired by several groups of Actimians :

We may test this suggestion by inquiring into the distribution of another character, e.g. the mesoghoeal sphincter muscle. This is present in all the Actinians that have acontia except Aiptasia and Halcampactis. It is also present in Halianthella, in Ophodiscus, aud in the Paractidæ. It is a character which has been held to be of considerable classificatory importance. If so, it should afford some guide to genetic relationships. But when we take the mesogloal sphincter into consideration along with acontia to what conclusions are we led? If a mesogloal sphincter is is sign of descent from a common ancestor, then Halianthella, Ophiodiscus, the Paractidæ, and the Surartian sub-families of Metridiinæ, Sagartiinæ, Plelliinæ, and Chondractiniinse are genetically related; the Aiptasiina and Halcampactis are not, bec:mse they have not got a mesogleal shincter. But we have just seen that the Aipasiinae and Halcampactis are related to the other sub-families of Sagartiida becanse they have acontia, and that lfalianthella, Ophisdiscns, and the Paractide are not related becanse they have no acontia. If acontia are taken as the criterion of descen, from a common ancestor, then Aiptasia and Halcampactis must either have independently lost the mesogleal sphincter or have never acquired it. If the mesogical sphincter is taken as a cri-
yol. 6:3, part 1.-new serifs.
terion, then the Sagartiidæ and Halcampactis must have acquired acontia independently of the Paractidæ, of Ophisdiscus, and of Halianthella; or these latter forms must at some time have possessed acontia and subsequently lost them. Whicherer way one looks at it, there is the question of the acquisition of a new character or the dropping ont of a character previously existing.

It will be more logical, however, to regard the phenomena from the following standpoint.

There are four possible combinations, viz.:
$(1)+$ Mesogloal sphincter, + acontia : Metridiinz Sagartinæe ; Phellinæ ; Chondractiinz.
$(2)+$ Mesoglœal sphincter, - acontia : Halianthella: Paractidæ.
(3) - Mesoglœal sphincter, + acontia: Halcampactis; Aiptasia.
(4) - Mesoylœal sphincter, - acontia : Actinia, Anemonia, Bumodes, etc.
(The plas and minus signs stand for presence or absence of the character in question.)

It will be observed that every possible combination is represented and that some of the combinations bring together forms between which no relationship has even been suggested, e.g. Halianthella and the Paractida.

We may go a step further and bring in another element, choosing the predominant size and "perfection" of the primary mesenteries only. 'Then, if we denote the presence of a mesogl oal sphincter by M., the presence of acontia by A., and the perfection of only the first cycle of mesenteries by I., and use the plus and minus signs as before, we get eight possible combinations, viz. :
(1) + M. + A. + I. : Metridinat Chondractiniint, Phellinæ.
$(2)+\mathrm{M} .+\mathrm{A} .-1 .:$ Sagartiina.
(3) + M. - A. + I. : Halianthella.
(4) + M. - . - I. : P'aractidat.
(5) $-11 .+\mathrm{A}+1$. : Hak ampactis.
(6) - M. + A. - I. : Aiptasia.
(7) -- M. - A. + I. : Halcampa.
(8) - M. - A. = I. : Actinia, Anemonia, Bunodes, etc.

Again, all the possible combinations are represented by described forms of living Actinians. This method of presenting the facts might be carried further by successively introdncing new elements, but it would quickly become so complicated as to require mathematical treatment, and I do not propose to pursue the subject in this place. ${ }^{1}$

What I want to emphasise is that we are dealing with unit characters, each of which may be present or absent, and when present may enter into all possible combinations with the other unit characters. In brief, these unit characters have all the properties of, and may legitimately be identified with Mendelian units.

This being the case is it not probable, and more than probable, that among the many "factors" that go to make up the full complement of rariable Actinian characters there are some which, when bronght together in the germ-cell, lead to the production of that particular outgrowth called an acontium? And if this be the case, does it not follow from the evidence accumulated by the experiments of the last fifteen years, that in any given Actinian germ-cell there may be some of the factors necessary for the prodnction of an acontinm, but that they will not lead to the exhibition of that feature in the adult organism muless one or more additional factors are added to them? I submit that the Phelliina give considerable support to this view, for in them the acontia show every possible grade between full development and reduction to the point of disappearance, and the most reasonab!e explanation of this phenomenon is that in some species

[^1](or varieties) there is missing a factor required for the full development of the structures in question.

If this be a true explanation, and it is the most consistent with recent researches, we can account for the appearance ordisappearance of acontia in groups having very different combinations of other characters, and we get rid, once and for all, of the idea that the presence of this single character is such a positive mark of inter-relationship that all the forms possessing it must be united into a single family. The same reasoning applies to the mesogloal sphincter and to every other structural feature which can be shown by the methods indicated above to be independently variable. I may claim also that this method of dealing with observational data throws a new light on the phenomena of homoplasy or parallel development, which I have dealt with on previons occasions in connection with other animals. Applying these principles to the subject in hand, it is obvions that the gronp Sagartiidæ, inclnding Halcampactis, the Aiptasiinæ, the Metridinæ, the Sagartiinæ, the Phelliinæ, and the Chondractiniinæ must be broken np. Halcampactis, jndged by the sum of its characters, takes its place with the Halcampidx. On the same principle, Aiptasia goes alongside of its obvions ally, Anemonia. 'I'he Phellinæ, as I have shown, must stand apart from the other sulb-families, and be approximated to the Halcampidr. Of the remaining gronps the Metridinae will be found to share one set of characters with the Chondractinimæ, another set with the Sagartiinæ, and further analysis may lead to further smbdivisions. It is also evident that the same principles will have to be applied to the whole of the Actiniinse; but I am not in a position, and do not propose, to make such an ambitions attempt now.

If the method of dealing with systematic questions which I have recommended and briefly indicated in the foregoing paragraphs were accepted and generally adopted, it wonld have a result, mpalatable to many zoologists, of undermining. many accepted beliefs on phylogenetic questions. But this, I beg leave to submit, would be wholly advantageons to the
progress of zoology. It is not possible to read 'Tower's investigations on the evolution of the genus Leptinotarsia and Morgan's critique of the 'Theory of Evolution,' together with much other current Mendelian literature, withont experiencing grave doubts as to the validity of a large part of current, systematic, and phylogenetic speculations. All this class of reasoning is open to the fundamental objection taken against it by Morgan, that we collect a large nnmber of " characters," external or anatomical, and arrange them in a series which we call evolutionary, without having any eridence as to the actual relationship by way of descent and inheritance among the different forms constituting our series. On the other hand, breeding experiments show direct genetic relationship between forms that one would never have supposed to have descended one from the other, and contrariwise, more remote relationship between forms which, on accepted methods of systematic criticism, one would unhesitatingly have placed in direct lines of descent. "Çela donne," or, at any rate, doit donner " furieusement à penser."

Having for some years past recognised the force of such criticisms as those mentioned in the preceding paragraph, and being convinced of the importance of bringing morphological and systematic studies into harmony with the principles established by genetic researches, I have endeavoured in the foregoing pages to arrange certain limited morphological and systematic data in conformity with the conclusions reached by the Mendelian school of zoologists, and have indicated a method that seems to me appropriate to the purpose. In so doing I am aware that I am proposing a revolution in our methods of envisaging and dealing with morphological and systematic problems, and have only given the barest outline of the plan which I propose to pursue. It is possible, as I perceive from some attempts that I have made in the course of writing these few pages, to carry the ideas I have propounded much further, and to give much greater precision to the methods roughly sketched out above. But the subject is one of great size and complexity, and therefore inappropriate
to the concluding passages of a memoir undertaken with only a limited object in view. My suggestions are, therefore, given for what they are worth in their present state of incompleteness, and a further discussion of the possibility of co-ordinating morphological, systematic, and genetic data must be postponed to a future occasion.

List of the Principal Papers referred to in the Text.

1. Andres, A.-"Actinien." ' Fauna und Flora des Golfes von Neapel,' ix, 1884.
2. Beneden, E. ran.-"Die Anthozoen der Plankton Expedition," ' Ergeb. der Plankton Expedition d. Humboldt Stiftung.' Bd. ii. K. e.
3. Bourne. G. C.-" Report on the Solitary Corals collected by Prof. Herdman at Ceylon," ' Ceylon Pearl Oyster Fisheries,' Supplementary Report, xxix, Published by the Royal Society, 1905.
4. -_A Description of Five New Species of Edwardsia, Quartr., from New Guinea," ' Linn. Soc. Journ.,' xxxii, 1916.
5. Carlgren, O.-"Studien über nordische Actinien,"' Kongl. Sven. Vet-Akad. Handl.,' xxv, 1893.
6. Carlgren, O.-"Zoantharien," 'Hamburger Magalhaenische Sammelreise,' Hamburg. 1898.
7. - Actiniarien d. Olga Exped. Wissensch. Meeresuntersuchungen," v .
8. Dixon, F.-" On the Arrangement of the Mesenteries in the Genns Sagartia, Gosse," • Proc. Roy. Dublin Soc.,' New Ser, vi, 1888.
9. Dixon, G. Y.-"Remarks on Sagartia venusta and Sagartia nivea," ibid., New Ser.. vi, 1888.
10. _-_ and Dixon, F.-"Notes on Bunodes thallia, Bunodes verrucosa, and Sealia crassicornis," ibid., New Ser., vi. 1889.
11. Duerden, J. E.-'The Coral Siderastræa radians and its Postlarval Development.' Washington, 1904.
12. Farquhar, H.-" Preliminary Account of Some New Zealand Actiniaria,' ' Linn. Soc. Journ.,' xxvi, 1898.
13. Faurot, L.-" Études sur les Actinies," 'Arch de Zool. expér. et gén.' (3), ii, $18 \% 5^{\circ}$.

[^0]: ${ }^{1}$ Thronghont this paper I use the terms " pair" and " couple" in Famrot's sense.

[^1]: ${ }^{1}$ The number of possible combinations is 2^{a}, where " stands for the number of unit characters entering into combination. Thus the addition of a fourth element would give sixteen possible combinations, and if all the twelve elements enumerated above as characters of Phelliinz but also occurring in other groups of Actinians were taken into account the $1^{\text {mssible }}$ number of combinations would be 2^{2} or 4096 .

